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L Abstract  

Oetai  led  probe measurements o f  temperature, 
pressure, and composit ion  were  taken  within a two- 
dimensional   test   sect ion.  A high  pressure gas gen- 
e ra to r   supp l ied  Hach 2.5 v i t i a t e d   a i r  or i n e r t  gas 
at  elevated  temperatures.  Special  water-cooled 
probes  and  sampling  techniques were  developed f o r  
the  short   test   t imes  required by heat-s ink  hard- 
ware.  Independent  methods o f  measuring  stream 
total   temperatures  are compared. The mix ing bound- 
a r y   o f  hydrogen with  the  supersonic gas stream was 

rl substant ia l ly   wider  in  the  presence  of   combust ion.  
m I g n i t i o n   o f  hydrogen,  as  determined  from  photo- 

m 
r;) 

graphic  exposures  of   the  radiat ing gases, va r ied  
from 3 1  cm downstream f r o m   i n j e c t i o n   t o  1 1  cm f o r  
a 20°K v a r i a t i o n  i n  stream s t a t i c  temperature. 
Ign i t ion   t imes  cor respond  to   l i te ra tu re   va lues   fo r  
lean  mixtures. 

I n t roduc t i on  

The design  of   supersonic  combustors  for  ad- 
vanced air-breathing  engines  requires  experimental 
data on the   d i f f us i ve   m ix ing  and r e a c t i o n   o f   f u e l  
and a i r   a t  the   h igh   tempera tures   typ ica l   fo r   f l i gh t  
Mach numbers above 6. The mixing  of   hydrogen  wi th 
ths  supersonic a i r  stream has genera l l y  been by one 
o f   severa l   d i f fe ren t   exper imenta l   con f igura t ions :  
pa ra l l e l   o r   ang led   f l ow   f rom a stepped  wall  through 
a s l o t   c o n f i g u r a t i o n ,  and normal o r   ang led   f low  o f  
hydrogen  through  arrays o f   ho les   o f   var ious   aspec t  
ra t ios ,   re fe rence I .  

Paral le l   s tepped-wal l   in ject ion  o f   hydrogen 
in to   t he  combustor i s  a t t r a c t i v e   f o r   d e t a i l e d   e x p e r  

bance o f  the  free  stream when f u e l  and a i r  pres- 
imental  study  since i t  r e s u l t s   i n  minimum d i s t u r -  

sures  are matched.  Two-dimensional f low  lends it- 
s e l f   r e a d i l y   t o   s t u d i e s   o f   i g n i t i o n   d e l a y  and 
mixing  lengths, and  can be compared w i t h   a n a l y t i c a l  
mode Is. 

Current  techniques o f   genera t ing  a supersonic 
a i r  stream  for  combustor tes t ing   requ i res  an a rc  

cornbination o f   t he  methods.  The arc   heater  and 
heater.  storage  heater,  combustion  device,  or a 

storage  heater have the  advantage  of  adding no 
water  vapor t o   t h e   a i r  stream,  but small p a r t i c u -  
la te   mat ter   can be en t ra ined   i n   t he   a i r   f r om  the  
heater  elements. 

. I n  the  tests   repor ted  here in ,   the  h igh temper- 
a t u r e  gas stream was produced  by  burning a hydrogerr 
n i t rogen  gas m i x t u r e   w i t h   l i q u i d  oxygen a t   h i g h  
pressure. Each component was regulated so that   the 
desired  total   temperature was achieved  wi th  an 
oxygen c o n t e n t   i n   t h e   v i t i a t e d   a i r   s t r e a m   o f   a b o u t  
21 percent by volume. For  the  non-reacting  mixing 
tes ts ,   the  gas products  contained no oxygen and 

method in   re fe rence  2 .  The balance i n   b o t h  cases 
on ly  a small f r a c t i o n   o f  hydrogen, s im i la r   t o   t he  

was composed o f   n i t r o g e n  and  water vapor. 

The o b j e c t i v e   o f   t h i s   w o r k  was to   ob ta in  
d e t a i l e d  measurements which  were  necessary t o  con- 
s t r u c t   t h e   f l o w   f i e l d   a t   s t a t i o n s  downstream from 
t h e   i n j e c t i o n   p o i n t   o f  hydrogen. Cases included 
hyd rogen   bu rn ing   w i th   v i t i a ted   a i r  and  hydrogeli 
m ix ing   w i th   ho t .   i ne r t  gas products. 

The instrumentat ion  developed  for  gas temper- 
a ture,   p i to t   pressure,  and gas sampling measure- 
ments i s  discussed.  Temperatures  measured by a 
thermocouple  probe  are compared wi th   those mea- 
s u r e d   i n d i r e c t l y   w i t h  a cooled-gas  pyrometer.  rcf- 
erence 3. Composi t ion  prof i les   for  hydrogen 
b u r n i n g   w i t h   v i t i a t e d   a i r  and  hydrogen  mixing  with 
ho t ,   i ne r t  gas products show the changes  caused by 
combustion.  Complete p r o f i l e s   o f   s t a t i c   p r e s s u r e ,  
s t a t i c  temperature. Macn number, v e l o c i t y ,  and 
composi t ion  for   burning and nonburning cases are 
presented. 

Ign i t ion  t ime  is   determined as a f u n c t i o r .   c f  
local  stat ic  temperature.  Calculated  values  are 
compared wi th   publ ished  induct ion  t ines.  

Exper i men ta  1 Ha rdda r e  

Gas qenerator. - An overa l l   v iew  o f   the   exper  
imental  hardware i s  shown i n   f i g u r e  1 .  The high- 
pressure,  heat-sink  combustion chamber was con- 
s t r u c t e d   o f   e l e c t r o l y t i c  copper. The in te rna l  
cross  sect ion  of   the chamber was 5.1 cm x 9.S3 C ~ I  

and i t s  length was 40.6 cm. A 36-element ccrnccn- 
t r i c  tube i n j e c t o r  was used f o r   u n i f o r m   i n t r o -  
duct ion and mix ing  o f   the  propel lants .  

The combust ion  ef f ic iency,  as determined by 
charac ter is t i c   exhaust   ve loc i ty ,  was approximately 
96 percent. The remaining 4 percent was a t t r i -  
buted  to   heat   t ransfer   to   the  inner   sur faces of 
the chamber. A more uni form  temperature  d is t r i -  
bu t i on  was achieved by i n s e r t i n g  two 1.95 cm d ia-  
meter  copper  bars a t   d i f f e r e n t   a x i a l   l o c a t i o n s   i n  
the chamber. 

The two  dimensional  copper  nozzle was designed 
to   supply   para1  le1  f low  to   the  test   sect ion  a t  
Mach 2.5 and atmospheric  pressure.  Part icular 
care was taken  to match  the 5 . 1  cm x 8.9 cnl nozzlf  
e x i t   t o  the   tes t   sec t ion   wa l ls  so t ha t  no change 
in   a rea   occur red  between them. The t o t a l  temper- 
a tu re   p ro f i l e   a t   t he   en t rance   t o   t he   t es t   sec t i on  
i s  shown i n   f i g u r e  2 .  The va lues  are  ra t ioed  to  
the   equ i l i b r i um gas temperature  calculated  from 
p rope l l an t  mass flows,  Tref. 

Test  sect ion.  - The tes t   sec t ion ,   f igure  3 ,  
was const ructed  o f   four  machined  copper  plates 
which were bo1 ted  together and  matched w i th   t he  
nozz le   ex i t .  The cross  section,  which  included 
the   n i cke l   i n jec to r  on  one  waJl.  remained  con- 
s tant   to   the  s tep.   Thereaf ' ter   the  test   sect ion 
expanded l i n e a r l y   f r o m  5.1 cm x 9.38 cm t o  5.1 cm 
x 10.5 cm a t   t h e   e x i t   t o  compensate fo r   the  bound- 
ary  layer  bui   Id-up. 
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Hydrogen uas i n j e c t e d   i n t o   t h e   t e s t   s e c t i o n  The  sampling  probes  were a l s o  used  as a cooled 
.through  the  backward-facing  step a t  Cbch 1, a t m -  g a s  pyrometer to I n d i r e c t l y  measure the  stream 
spher i c   p ressu re ,   and   pa ra l l e l   t o   t he   v i t i a ted   a i r .  .. t o t a l  temperature,  and a p i to t   pressure  probe.  
flow. L ip  thickness a t   t h e  toD of  the  steD was 
.076 cm. .Seven r ibs  across  the 5.1 cm width,  each 
-076 cm th ick ,   s t ra igh tened  the  flow and  prevented 
warpage o f   t h e   t o p   p l a t e  and l i p .  The t o t a l  tun- 
perature  o f   the  hydrogen  f lowing  through  the  s lo t  
could  be  var ied  f rom 300K to 8 0 0 ~ .  Hydrogen was 
heated i n  a storage  heater  which  contained a c o i l  
o f  heavy-wal led  stainless  steel   p ipe embedded i n  a 
4.5 Kw e l e c t r i c  furnace. 

. -  

c 

Stat ic   pressure  taps were  spaced a t  1.25 cm t o  
3.8 cm increments  along  the  wall  downstream from 
the  step  and moni tored wi  th a mu1 t i p l e  - scanning 
pressure  transducer.  Four 15.1 cm diameter  quartz 
windows  were  mounted f lush   w i th   the   inner   wa l l   sur -  
faces  for   v isual   and  photographic  observat ions 
w i t h i n   t h e   t e s t   s e c t i o n .  

Thermocouple  and p i to t   pressure  probes.  - A 
water-cooled, wedge shaped  thermocouple  probe was 
designed  wi th a blunted  leading edge, f i g u r e  4. 
The exposed-junction  thermocouple  could be e a s i l y  
rep laced   i n   case   o f   t i p   f a i l u re .  Thermocouple 
ma te r ia l s  were i r id ium-- i r id ium/40  percent  rhodium 
o r  tungsten--tungsten/26  percent  rhenium.  Wire 
diameters  ranged  from .025 cm t o  .076 cm. A sim- 
i lar   water-cooled  probe was cons t ruc ted   f o r   p i   t o t  
pressure measurements.  The pressure  port  was 
located  in   the  leading edge of  the  probe  approxi- 
mately.2 cm from  the end. 

I n  the  boundary  layer and i n   t h e  low  temper- 
a ture  hydrogen-r ich  mix ing  reg ion,   min ia ture swaged 
thermocouples  and  miniature  pitot  pressure  probes 
were  used. 

Samplinq  probes. - Two s imi lar   water-cooled 
probes  were  designed t o   o b t a i n  gas samples  and  were 
a l s o  used f o r   i n d i r e c t  temperature measurements. 
The f i r s t  probe,  designated as Probe I ,  could be 
extended  in to   the  test   sect ion  c loser   to   the  s tep.  
The second  probe.  designated  as  Probe 1 1 .  f i g u r e  
48, could  on ly  be  used i n  t h e   t e s t   s e c t i o n   e x i t  
plane. The copper  cone t i p   i n   t h i s  probe  is 
replaceable. 

The two sampl ing  probe  t ips  are shown i n   f i g -  
u r e  5A and 5B. I n  Probe I ,  water was supplied 
through  c i rcumferent ia l ly   p laced  tubes and returned 
through  the  annular spaces  between the tubes. 
Water i n  Probe I 1  was dumped downstream from the 
t i p .  Probe I also  incorporated 3 s t a t i c   p r e s s u r e  
taps spaced equal ly  around  the cone sur face .635 cm 
downstream  from  the  probe  t ip. 

Both  Probes I and I I were f i t t e d   w i t h  a small 
v e n t u r i  15.4 cm and 11.8 cm dqwnstream  respec- 
t i v e l y .  Each v e n t u r i  was instrumented  wi th two 

*pressure  taps  and a small  thermocouple. A second 
v e n t u r i  was placed downstream  between the  probe 
sample o u t l e t  and  the sample container, and was 
also  equipped  with  pressure  taps and a thermocouple. 
The amount o f   water   vapor   in  each  trapped  sample 
was deduced f r o m   t h e   d i f f e r e n c e   i n   t h e   h o t  and 
cooled gas mass f l o w s ,   a f t e r   a d j u s t i n g   f o r   s a t u -  
ra ted  gas f l o w   i n   t h e  second ven tu r i .  The water 
d rop le ts   wh ich   co l lec ted  on  the  inner   wal l   o f   the 
sample l i n e  were  purged  out  with  hel ium  before each 
succeeding  run. 
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Exper  imenta 1 Procedure 

t i o n   w i t h  s teady   s ta te   f lows  es tab l i shed  fo r  2.5' 
Runs were  sequenced f o r p  three second dura- 

seconds or longer .   no t ion   p ic tu re   ana lys is   ver -  
i f i e d   s t a b i l i t y   o f   t h e  combustion  process  above 
t h e   I g n i t i o n   l i m i t s .   G e n e r a l l y .   a l l   r e a d i n g s  were 
taken 2.5 seconds a f t e r   i n i t i a t i o n   o f  each  run. 
Instrumentation  probes  used i n  the   tes t   sec t ion  
were moved incremental ly between  succeeding  runs 
t o   o b t a i n   t h e   p r o f i l e s   o f   p i t o t   p r e s s u r e ,   t o t a l  
temperature,  and  composition. 

Stat ic   pressures were  measured a t   t h e  en- 
t rance  to   the   tes t   sec t ion ,   a long  the   wa l l  down- 
stream  f rom  the  hydrogen  in ject ion  step,  in  the 
gas generator,  and  upstream  from  the  sonic-flow 
nozzles i n   t h e   n i t r o g e n  and  hydrogen  supply  lines. 

Prec is ion and R e p r o d u c i b i l i t y   o f  Measurements 

Gas generator  f lows  were  reproducible  within 
- + 1 percent. The Mach number d i s t r i b u t i o n   i n   t h e  
tes t   sec t ion   p roved  to  be u n i f o r m   w i t h i n  3 per- 
c e n t   i n  a 6 cm core  section  before  the  step.  Pres- 
sure,  temperature, and composition measurements 
were genera l l y   w i th in  a band o f  2 2.5  percent. I n  
the   reac t ion  zone, measurements var ied  over  a 
wider range from run  to  run.  

Temperatures  indicated by the  thermocouple 
probe were reproducib le   wi th in  2 3 percent when 
care was taken to   i nsu re   i n teg r i t y   o f   w i re ,   j unc -  
t i on ,  and alumina  insulator.  Readings  were  taken 
a f te r   junc t ion   tempera ture  had s t a b i l i z e d ,  sim- 
i la r   to   the   p rocedure   in   re fe rence 4. 

The sampling  probes were c a l i b r a t e d   w i t h  
reference  f low  nozzles  over a range of   f low5  cor-  
responding t o   t h e  Reynolds number range  encoun- 
tered  in   the  test   runs.   Heat   t ransfer   character-  
i s t i c s   o f  each probe were obtained  using  heated 
ni t rogen.  Analysis  of   the  t rapped samples was 
done on a mass spectrometer and on a dry  basis,  
were accura te   w i th in  2 percent.  Water  vapor  frac- 
t i o n  depended upon the   d i f f e rence   i n   t he  two  noz- 
z le   f l ows ,  and was es t imated  to  be w i t h i n  1: 5 
percent. 

Results and Discussion 

Experimental  condit ions. - The  measurements 
i n   t h e  combustion  region were obtained  for   approxi-  
m t e   f r e e   s t r e a m   c o n d i t i o n s   a t   t h e   e n t r a n c e   t o   t h e  
t e s t   s e c t i o n   o f   b c h  2.5, atmospheric  pressure, 
and s t a t i c  temperature  genera 1 I y i n   t h e  range 
l2OOK to 1220K. In   the   pure   mix ing  case,  the Mach 
number and s ta t i c   p ressu re  were  about  the same 
whi le  the  stat ic  temperature was s l i g h t l y  lower, 
or   about 115OK. I n   b o t h  cases,  hydrogen was in- 
j e c t e d   a t   s o n i c   v e l o c i t y ,  matched s t a t i c  pressure, 
and a total  temperature  which was s l i g h t l y  above 
ambient  temperature i n  most  cases,  These input 
condi t ions w i l l  be assumed to   app ly   to   the   da ta  
un less   o ther   cond i t ions   a re   spec i f i ca l l y   s ta ted .  

I 

The m a j o r i t y   o f   r e s u l t s  were obtained  at   the 
t e s t   s e c t i o n   e x i t   p l a n e  35.6 cm downstream  from 
the  hydrogen  inject ion  step. Hence i n   r e p o r t i n g  

. ....- - _ . . . ~  . . _  . . _ .  . . ,  
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t h e   r e s u l t s ,   t h i s   s t a t i o n  will be  implied  unless 
otherwise noted. The thermocouple  probe  and p i t o t  
pressure  probe  were  receded s l i g h t l y  f rom  the  test  
sec t i on   ex i t   p lane   t oensure   t ha t   t he   de tached  
shock o f f   t h e  probe  leading edge  docs not  extend 
ins ide   the   tes t   sec t ion .  

Composition measurements. - O r i g i n a l l y   t h e  
' compos i t ion   p ro f i le   fo r   the   reac t ing   case m s  ca l -  

culated  from  the  sampling  data  obtained  using 
J'robe I and shown i n   f i g u r e  6.  Hwever, it i s  

be l l eved   t ha t  s m  of   the   water  condensed upstream 
from the  p robe  ventur i   fo r   da ta   po in ts   taken  in  
the   ex i t   p lane  between Y = 0 and Y = 1.75 cm, 
where stream  temperature was r e l a t i v e l y  l o w .  This  
conclusion was reached since  the  cooled-gas  pyro- 
meter t o t a l  temperature f e l l  considerably  below 
the   to ta l   tempera ture   ob ta ined  d i rec t l y   us ing   the  
thermocouple  probe.  Apparently  the  cooling  water 
tempera ture   d id   no t   inc rease  su f f i c ien t ly   to   p re-  
vent  condensation  on  the  thermocouple  wires. The 
thermocouple  reading  therefore  did  not  correspond 
to  the  t rue  temperature.  However, the  composition 
in   the  f ree  s t ream  reg ion  agreed  wel l  with the 
average  composition o f   v i t i a t e d   a i r   c a l c u l a t e d  
from  the measured propel lant   f lows.  

The sampling  traverse was repeated  wi th  the 
probe  cool ing  water  preheated  near ly  to  the  boi l ing 
point .  It was necessary t o  use  another  probe f o r  
th is   t raverse ,  Probe I I ,  because the t i p   o f  Probe I 
developed  a  water  leak. The compos i t i on   p ro f i l e  
ca l cu la ted  from Probe I I  measurements i s  shown i n  
f i g u r e  7. I n  comparison w i th   the   p rev ious   f igure ,  
the  water  vapor  volume  f ract ion  is   considerably 
reduced f o r  Y less than 2 cm. The higher  water con- 
t e n t   i n   t h i s   r e g i o n   i n   f i g u r e  6 resul ts   f rom  the 
fac t   tha t   the  mass f low  rate  through  the  probe 
ven tu r i  was based on  a  thermocouple  temperature 
which was actual ly   lower   than  the  t rue gas temper- 
a t u r e  due to  condensat ion  ef fects.  

I n   c a l c u l a t i n g   t h e  mass -f low  through  the  probe 
ven tu r i ,  i t  was assumed tha t   the  gas bu lk  temper- 
a ture,  TI, i s   r e l a t e d   t o   t h e  measured  thermocouple 
temperature, T,, accord ing   to   the   re la t ion :  

where  Twl is  the  tube  wall   temperature  which i s  
taken t o  be equal  to  the  cool ing  water  temperature. 
Th is   f o l l ows   f rom  the   ve loc i t y   p ro f i l e   g i ven   i n  
reference 5 and  the  assumption  that  the  velocity 
and temperature  prof i les   are  s imi lar .  A s i m i l a r  
conc lus ion   i s   a lso  reached  from  the  data  presented 
in   re fe rence 6. 

The t ranspor t   p roper t ies   o f   the  gaseous mix- 
ture,   which  are  necessary  for   the  determinat ion  of  
the  Reynolds and Prandt l  numbers, were ca lcu lated 
us ing   approx imate   re la t ions   essent ia l l y   iden t ica l  
t o  those  presented i n   re fe rence  7. Co l l i s i on   c ross  
sect ion  data were obtained  from  reference 8. 

Both  oxygen  and  hydrogen are   p resent   in   smal l  
amounts i n  a  narrow  region  around Y = 2.3  cm, f i g -  
u re  7. Composi t ion  var ia t ions  dur ing  the  run  or  
p a r t i a l  quenching of   the  chemical   react ions can 
account f o r   t h i s .  The mixing  boundary  extends 
approx imate ly   to  2.9 cm. 

The composition p r o f i l e   f o r   t h e   n o n r e a c t i n g  
case i s  presented i n  f i g u r e  8. I n   t h i s  case gas 

samples  were taken  using  the  p i tot   pressure  probe 
and  consequently measurements o f   t h e  sample water 
content  were n o t  made. It was assumed tha t   the  
r a t i o   o f  volume f rac t ions   o f   water   vapor   and  n i t ro -  
gen i s  constant. The mixing  boundary  extends 
about 2.3 cm from  the  stepped  wall. . 

P i to t   p ressu re  measurement. - The p i t o t   p r e s -  
sure measurements a re   p resented   in   f igure  9. The 
re fe rence  p ressure   no ted   in   th is   f igure  was taken 
t o  be equal   to  the gas generator  pressure. I n  

due t o   s l i g h t  changes i n   p r o p e l l a n t  f lows are 
t h i s  way, run-to-run v a r i a t i o n s   i n  p i t o t  pressure 

reduced. The i n i t i a l  boundary layer   th ickness   i s  
about 1 cm wh i le   the   w id th   o f   the   d is tu rbed  reg ion  
i s  about 2.4 cm fo r   the   pure   mix ing  case,  and 
about 3.1 cm f o r   t he   reac t i ng  case.  These values 
are  close  to  the  boundaries  determined  from  the 
compos i t i on   p ro f i l es .   P i to t   p ressu res   i n   t he  com- 
bust ion  reg ion  var ied  cons iderably   dur ing  the run, 
i n d i c a t i n g  some f l u c t u a t i o n   i n   t h e  combustion 
process . 

Direct   to ta l   temperature measurement. - Most 
o f   t h e  measurements were made us ing  i r id ium--  
ir idium/40  percert  rhodium  bare  wire  thermccsuples 
and a re  shown i n   f i g u r e  10.  The r a d i a t i o n   c c r -  
r e c t i o n  was  made according  to  the  equat ions  pre- 
sented in   re ferences 9 and 10. The e m i s s i v i t y   o f  
the   i r id ium and the  i r id ium-rhodium  al loy was 
assumed equa l   to   the   emiss iv i ty   o f   p la t inum  ( re f -  
erence 1 1 ) .  The emiss iv i ty   da ta  were obtained 
from  reference 12. 

The recovery  correct ion was estimated f rm 
the  resu l ts   ob ta ined  fo r   s im i la r   t ype  thermo- 
couples in   re ferences 13 and 14. The r a d i a t i o n  
co r rec t i on   d id   no t  exceed 85K whi le  the maximum 
recovery  correct ion was about 70K. 

The points   c lose  to   the  s tepped  wal l   for  
X = 0 and X = 18.3 cm and the two p o i n t s   a t  X = 
33 cm were obtained  using  miniature  thermocouples. 
The f lagged  po in t   fo r  Y = 1.9 cm a t  the   tes t  
s e c t i o n   e x i t  was obtained  using  a  tungsten-- 
tungsten/26  percent  rhenium  thermocouple. I t  
should be noted  that  the  indicated  temperature 
f o r   t h i s   p o i n t   c o u l d  be i n   e r r o r  because of   oxida- 
t i o n   o f   t h e  thermocouple  surface. However, exami- 
n a t i o n   o f  gas compos i t i on   i n   f i gu re  7 ind icates 

p resen t   a t  t h i s   pos i t i on .  I t  i s   a l s o  noted t h a t  
t ha t   on l y  a  small amount o f  oxygen i s  l i k e l y  t o  be 

a t  a somewhat lower  free  stream  temperature,  for 
t he   pos i t   i on   o f  Y = 1.59 cm, the  temperature 
obtained  with  a  tungsten-rhenium  al loy thermo- 
couple  agreed  wel l   w i th   the  va lue  obta ined  a t   the 
same pos i t ion   us ing   an   i r id ium-rhod ium  a l loy  
thermocouple. 

Comparing t h e   r e s u l t s   i n   f i g u r e s  7 and IO. i t  
appears  that   the  pos i t ion  o f   the maximum temper- 
a t u r e   i s   s h i f t e d   s l i g h t l y   t o   t h e   l e f t   o f   t h e   p o i n t  
where water  vapor f r a c t i o n   i s   a  maximum. 

The reference  temperature,  used t o   r a t i o   t h e  
values o f   t o t a l  temperature i n   f i g u r e  10, i s   t h e  
ca lcu lated gas generator  temperature  for  each 
p a r t i c u l a r  run. I ts   representat ive  average  va lue 
i s  noted i n  the legend. 

c 
Ind i rect   to ta l   temperature measurement. - The 

total   temperature was a lso  ca lcu lated  f rom  the 
measurement o f  the gas sample temperature a t  the 
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probe  ventur i   using  Probes I and I I  as cooled-gas 
pyrometers,  reference 3. 

The bulk  cooled-gas  temperature, TI, i s  
r e l a t e d  t o  the   to ta l   tempera ture   a t   the   p robe 
entrance, To, by  the  equation: 

To = (TI - Tw) exp  k4Xt/d)St] + Tw (2) 

where Tw Is the  average  tube. wa 1 1 temperature and 
i s  assumed equal  to  the  average  water  temperature; 

Xt   is   the  probe  thermocouple  locat ion measured from 
, the   p robe  t ip ;  d i s   t he   i ns ide   d iamete r   o f   t he  tube; 
and S t  i s   t he   S tan ton  number. 

The Stanton number i s   g i ven  as a f u n c t i o n   o f  
Reynolds number, Re, and Prandt l  number, P r ,  by  the 
r e l a t i o n   ( r e f .  12, 15): 

where Hc and a are  constants  which  are  determined 
by c a l i b r a t i o n .  The Prandt l  number and t h e   v i s -  
c o s i t y   i n   t h e  Reynolds number were c a l c u l a t e d   f o r  
an  average film temperature,  Tf,  which was g iven by 
the  equation: 

Tf = [(TI + To112 + Tw] /2 (4) 

Probes I and I I were ca l ib ra ted   us ing   the  
t o t a l  temperatures  obtained  from  direct thermo- 
couple  probe measurements i n   t h e   t e s t   s e c t i o n  and 
using  the  data  obtained  in a s p e c i a l   c a l i b r a t i o n  
using  preheated  nitrogen. The r e s u l t s   f o r  Probe I 
a r e  shown i n   f i g u r e  I1A.  Points  obtained  f rom 
hydrogen-v l t ia ted  a i r   runs  in   the  low  Reynolds 
number reg ion (Y<1.59 an) were omi t ted   i n   de te r -  
mining Hc because of  the  probable  water  vapor con- 
densat ion   in   the  probe. 

The corresponding  resul ts   for  Probe I I a r e  
shown i n  f i g u r e  118. The p o i n t s   w h i c h   f e l l  above 
the Hc = .067 l i n e  i n  the  low  Reynolds number re- 
g ion  were a l l  taken  for   smal l   values  of  Y,  as  seen 
i n   f i g u r e  12. In   th is   reg ion  near   the  s tepped wal 
i t  is  bel ieved  that  the  thermocouple  temperatures 
were i n   e r r o r  because of  the  boundary  layer  separa 
t i o n  induced by the  thermocouple  probe.  This  is 
s u b s t a n t i a t e d   i n   f i g u r e  10, where  two p o i n t s   a t  
X = 33  cm taken  wi th  a miniature  thermocouple  fe l  I 
considerably  below  the  points  at   the 35.6 cm 
measur ing   s ta t i on ,   ve r i f y i ng   t ha t   t he   l a t te r   po in ts  
were i n   e r r o r .  

The f l agged   po in ts   i n   f i gu res  l l B  and 12 
deviate  markedly  from  the Hc = .067 l i ne .  They f a l l  
j u s t   t o   t h e   l e f t  and t o   t h e   r i g h t   o f   t h e  maximum 
temperature  region. (The measured temperature  using 
the  tungsten-rhenium  alloy  thermocouple was not  
included.) One reason f o r   t h e . d e v i a t i o n   i n  Hc may 
be due t o  the   d i f f e ren t   f l ow   reg ime   i n   t h i s   l ow  
-Reynolds number and high  temperature  region. I n  

a l o c a l   c a l i b r a t i o n  l i n e  Hc = .Os5 f o r  the pos i -  
t h i s  case  there i s  sane j u s t i f i c a t i o n  f o r  assuming 

t i o n s   w h i c h   l i e  between the  f lagged  points.  There 
is ,  however, l e s s   j u s t i f i c a t i o n   f o r   t h i s  assumption 
i f  the   dev ia t i on   o f  Hc i s  due t o  chemical  reactions 
w i t h i n   t h e   t i p   o f   t h e  probe.  Nevertheless, i f  the 
above  two  values o f  Hc a re   used   t o   ca l cu la te   t he  
total   temperatures,   the  resul ts  are as shown i n   f i g -  
u re  13. A l s o   i n c l u d e d   i n   t h i s   f i g u r e   a r e  temper- 
atures  which were  computed from measurements made 
using  Probe 1 .  However, Probe I p o i n t s   i n   t h e  

hydrogen-rich  region were not   inc luded because o f  
the  condensat ion  ef fects  noted  previously.  

For  the  -purpose o f  comparison, f i g u r e  13 a l s o  
includes curves reproduced f r a  f i g u r e  10. The 
do t ted   l ine   c lose   to   the   s tepped  wa l l  basses 
through  the  cooled gas  pyrome-ter po ints .  I t  a l s o  
co inc ides  wi th   the  two  po ints  measured w i th   t he  
miniature  thermocouple a t   t h e  X = 33 cm s ta t i on ,  
f i g u r e  10. I n  general, a f a i r  agreement i s  noted 
f o r   t o t a l  temperatures  derived  by  two  dif ferent 
methods. The cooled gas pyrometer  using  Probe I 
gives somewhat h igher   va lues   in   the   reac t ion   reg ion  
fo r   t he   hyd rogen-v i t i a ted   a i r   case  and i n  a por- 
t i o n   o f   t h e   d x i n g   r e g i o n   f o r   t h e   p u r e   m i x i n g  case. 

Wall s ta t i c   p ressu re  measurements. - The 
stat ic   pressure  a long  the  s tepped  wal l   ra t ioed  to  
t h e   n o z z l e   e x i t   s t a t i c   p r e s s u r e   i s  shown p l o t t e d  
i n   f i g u r e  14. There i s  evidence o f  a s l i g h t  ex- 
pansion a t  X = 2 cm and a subsequent  recompression 
near X = 8 cm for   both  the  pure  mix ing and com- 
bus t i on  cases.  These pressure waves were no t   a f -  
fected by a change i n  hydrogen in jec t ion   p ressure  
and  hence  must o r i g ina te   f rom a s l i g h t  mismatch 
in   the  tunnel  walls. Changes i n  hydrogen  injec- 
t i o n   p r e s s u r e   a f f e c t e d   o n l y   t h e   f i r s t   s t a t i c   p r e s -  
sure  por t ,  X = .58 an. For  the  combustion  case, 
the s t a t i c   p r e s s u r e   r i s e  comnencing a t  about I A  cm 
i s   a t t r i b u t e d   t o  combustion. 

Temperature e f f e c t s  on i q n i t i o n .  - The 
ign i t i on   l eng ths  were determined  from  photographs 
o f   the   rad ia t ion   wh ich   o r ig ina ted   a t   var ious   d is -  

po int .  A f a s t  (ASA 400) u l t r a v i o l e t  s e n s i t i v e  
tances downstream f ran the  hydrogen i n j e c t   i o n  

f i l m  was exposed f o r  1/15th second at   f /4.5  near 
the end o f  each  run. The ign i t i on   l eng ths  as 
determined  by  the  onset o f   u l t r a v i o l e t   r a d i a t i o n  
a re  shown i n   f i g u r e  15. The f ree   s t ream  s ta t i c  
temperature a t  each  data  point was l i n e a r l y   i n t e r -  
po lated between entrance and e x i t   s t a t i c  temper- 
atures. The ign i t ion   leng th   inc reased  l inear ly  
w i t h  a s l i g h t  decrease in   l oca l   s ta t i c   t empera tu re  
and was no t   a f fec ted  by a 400K change i n   t o t a l  
hydrogen  temperature. 

The degree o f   reac t   i on  can a l s o  be determined 
f rom  the   r i se   in   s ta t i c   p ressure  as was shown i n  
f i g u r e  14. The s t a t i c   p r e s s u r e   p r o f i l e s   f o r  a 
700K hydrogen  temperature and a ser ies of f r ee  
stream  stat ic  temperatures  are shown i n   f i g u r e  16. 
The so l id   po in ts   represent   ign i t ion   d is tances   f rom 
f i g u r e  15. An increase i n   s t a t i c   p r e s s u r e  due t o  
combustion  occurred somewhat before  onset o f  u l t r a -  
v io le t   rad ia t i on .   A l though   to ta l   s ta t i c   p ressu re  
r i s e  was a f u n c t i o n   o f   s t a t i c  temperature,  igni- 
t i o n   p o s i t i o n s   c o u l d   n o t  be determined  using  pres- 
sure  data. 

Computed f l o w   f i e l d .  - The complete  f low 
f i e l d   a t  t he   t es t   sec t i on   ex i t   p lane  was f i r s t   c a l -  
cu la ted assuming tha t   s ta t i c   p ressu re  was uniform 
and equal t o   t h e   w a l l   s t a t i c   p r e s s u r e   a t   t h e  33  cm 
s ta t i on .  The composition  corresponded  to  the 
p l o t t e d   v a l u e s   i n   f i g u r e  7 wh i le   t he   t o ta l  temper- 
a tu re  and p i to t   p ressu re  were obta ined  f rom  fa i red 
curves i n   f i g u r e s  13 and 9 respect ive ly .  The 
s ta t i c   p ressu re  on  the cone surface was then  cal-  
cu la ted   fo r   the   pos i t ions   ind ica ted   in   Tab le  l and 
compared w i th   the  measured  cone s ta t i c   va lues .  
Th is   i te ra t i ve   p rocedure  on  stream s ta t i c   p ressu re  
was repeated u n t i l   c a l c u l a t e d  and measured values 
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o f  cone s ta t i c   p ressu res  agreed. Table I l i s t s   t h e  
f i n a l   v a l u e s  of s t a t i c   p r e s s u r e  in  the   f ree   s t ream 

t h e   s t a t i c   p r e s s u r e   v a l u e   i n   t h e   r i g h t  column o f  ' 

Table 1 was used  as  a  representative  value  for  each 
tes t .  

' region.  For  f inal   computat ion of t h e   f l o w   f i e l d ,  

The  cone f l ow   so lu t i on   desc r ibed  above was 
obtained  for   the  geometry as shown i n   f i g u r e  5A 
us ing   ro ta t iona l   charac ter is t i cs   theory .   Ca lo r ic  

r i m p e r f e c t i o n s  have  been inc luded  in   the   ca lcu la -  
l i o n s .  

* 
Mach number, s t a t i c  temperature,  and v e l o c i t y  

d i s t r i b u t i o n   a t   t h e   e x i t   s t a t i o n   a r e  shown i n   f i g -  
ures 17, 18, and 19. I n   o b t a i n i n g   t h e   r e s u l t s  
p l o t t e d   i n  these  f igures,  the  composit ion was as- 
sumed g iven by t h e   f a i r e d   c u r v e   i n   f i g u r e  7, ra the r  
than by the   ac tua l  measured values a t  each  location. 

I n  the  combustion  region,  the Mach number i s  
s ign i f i can t ly   lower   than  in   the   pure   mix ing  case, 
a l t hough   the   f l ow   i s   s t i l l   superson ic .  A steep 
inc rease   i n   s ta t i c   t empera tu re   i s   a l so   no ted   i n  
th i s   reg ion   wh i l e   t he   ve loc i t y  remains f a i r l y   u n i -  
form. The u n i f o r m i t y   o f   v e l o c i t i e s   a l s o   i m p l i e s   a  
r e l a t i v e l y  low  va lue  o f   the  turbulent   mix ing 
i ntens i ty. 

E a r l i e r   i n   t h i s   d i s c u s s i o n ,  i t  was noted  that  
the  mixing-react ion  region  for   the  combust ion case 
i s   s ign i f i can t l y   w ide r   t han   t he   m ix ing   reg ion   i n  
the  pure  mixing  case.  This  effect, however. may be 
l a r g e l y  due to  the  expansion  of   streaml ines  dur ing 
combustion. The ques t ion   o f   whether   o r   no t  com- 
bus t i on  enhances mixing  should,  therefore, be 
approached by us ing   the   tu rbu len t   m ix ing  model 
developed for   pure  mix ing  data  in   a   complete  so lu-  
t ion  involv ing  chemical   react ions.  These r e s u l t s  
should  then be compared with  exper imental  com- 
bust ion  data.  

Induct ion  t ime. - Based on t h e   i g n i t i o n   t e s t s  
shown i n   f i g u r e  15, i t  is   poss ib le   to   est imate  the 
induct ion  d is tances and compare them wi th   pub l i shed 
resul ts.   Since  a 400K change i n  hydrogen t o t a l  
t empera tu re   d id   no t   a f fec t   t he   i gn i t i on   l im i t s .  i t  
was assumed t h a t   i g n i t i o n   o r i g i n a t e d   i n   a   r e g i o n  
c lose   to   f ree   s t ream  cond i t ions ,   in   a   lean   mix tu re  
range. 

For  an  average  local   stat ic  temperature  of  
1265K, f ree   s t ream  ve loc i t y   o f  1600 m/sec.. and 
ign i t ion   d is tances   f rom 10 cm t o  30 cm, i nduc t i on  
times  ranged  from 69 x 10-6 sec. t o  207 x 10-6 sec. 
Induct ion  t imes  reported i n  reference 16 fo r   l ean  
hydrogen-oxy  en  mixtures  varied  from 69 x sec. 
t o  333 x 10-8 sec. f o r  (H2)/(02) r a t i o s  between 
,064 and .0075 respect ive ly .  From t h i s  agreement 
i t  appears   tha t   ign i t ion  does o r i g i n a t e   i n   a   l e a n  
H Z - v i t i a t e d   a i r  range  where  hydrogen  volume f rac -  
t i on   i s   l ess   t han  .0133. Also  the  presence  of  a 
r e l a t i v e l y   h i g h  volume f rac t i on   o f   wa te r   vapor   d id  
no t  have a  large  e f fect   on  the  induct ion  t imes 
observed in   these  tes ts .  

Conclusions 

Complete p r o f i l e s   o f   t o t a l  temperature, p i   t o t  
pressure,  and gas composit ion were taken  across  a 
two-dimensional  supersonic  test  section. The ex- 
perimental  results  presented  here  are  complete a t  
t h e   e x i t   s t a t i o n   f o r  hyd rogen   i n jec ted   pa ra l l e l   t o  
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the   f ree   s t ream and a t  matched s t a t i c  pressure, 
Data are  presented  for   the  case  o f   hydrogen 
b u r n i n g   w i t h   v i t i a t e d   a i r ,  and  the  case o f  hydro- 
gen m i x i n g   w i t h   h o t ,   i n e r t  gas products. The 
w i d t h  of the   mix ing- reac t ion   reg ion   in   the  com- 
bustion.case was found t o  be s i g n i f i c a q t l y   g r e a t e r  
than  the   mix ing   reg ion   w id th   fo r   the   pure   mix ing  
case. I n  the  center  of   the  iombust ion  region, ' 

h c h  number decreased  one-third,   stat ic temper- ' 

a t u r e  more than  doubled, and ve loc i ty   increased 
s l i g h t l y  f r a  values  for  the  pure  mixing case. 
Induct ion  t imes computed from  the measured d i s -  
tances  and f ree   s t ream  ve loc i t y   ag reed   w i th   t he  
va lues   repor ted   in   the   l i te ra tu re   fo r   lean  
mixtures. 
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TABLE I STATIC PRESSURE I N  FREE  STREAM REGION 

Case 

React 

H i x i  

Probe 
P o s i t i o n  

(cm) 

3.81 

3.18 

2.54 

5.08 

3.81 

3.18 

F + 
1.21 x-105 

1.16 x 105 

1.10  x 105 

.13 X 105 

S t a t i c  
Loca 1 

(N/m2) - 

- 

1.17 x 105 

1 . 1 0  x 105 

c 

6 

. .  .: . . 
. !  

Pressure 
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Figure 1. - Supersonic  combustion  hardware. 
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Figure 2. - Total  temperature  ratio  at  the  injection 
step, vitiated  air. 
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Figure 3. - Test  section  showing  hydrogen  injection step, 
location of static  pressure  ports  and  measurement  stations. 
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Figure 4a). - Thermocouple  probe. 
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Figure 4b). - Sample  probe 11. 
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Figure 5. - Sampling  probe tip details. 
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Figure 6. - Composition profile  using probe I. 
X = 35.6 cm,  hydrogen-vitiated  air. 
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Figure 7. - Composition  profile  using probe 11: 
X = 35.6 cm,  hydrogen-vitiated  air. 
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Flgure 8. - Composition  profile  for  pure  mixing  using 
pitot  pressure probe. X = 35.6 cm, hydrogen-inert 
gas. 
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Figure 9. - Pit t pressure  profiles,  Vitiated  air, P r d  = 
17, lxld Nlm s ; iner t  gas, Pref = 18.5xld Nlm2, 
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Figure 10. -Total  temperature  ratios  from  thermocouple meas- 
urements.  Vitiated  air, Tref = 2380 K; iner t  gas,  Tref = 2276 K. 
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Figure 11 - Heat transfer  calibrations of probes I and 11. 
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Figure 12. - Calibration  constant Hc versus  distance Y. 
Hydrogen-vitiated  air. 
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Figure U. - Total temperature  ratio  from  cooledqas  pyrometer I .  I .  

measurements, X = 35.6 cm; vitiated  air, T r d  2380 K; 
iner t  gas, Tref = 2276 K. 
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Figure 14. - Wal  static  pressure  ratio.  Pnozzle = 
Q 917xld Nlm d . 
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Figure 15. - Hydrogen-vitiated air  ignition  distances 
determined by onset of ultraviolet  radiation. 

LOCAL STATIC  TEMP 
0 1270K 

l266K 
0 1269K 
v 1266 K 
A 1262 K 

SOLID  POINTS REPRESENT IGNlTiON 
DISTANCES F R W  FIGURE 15 

0 5 10  15 20 25 30 35 
X, C M  

Figure 16. - Wall  static pressure  for  various  local  static 
temperatures;  total  temperature of hydrogen, 700 K. 
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Figure 18, - Static  temperature  profile. X =  35.6 cm. 
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Figure 19. - Velocity  profiles, X 35.6 cm. 


